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Wind-tree model in two dimensions with internal degrees of freedom: Exact solution
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The two-dimensional wind-tree model with particles with four allowed velocities, which can scatter off
obstacles with internal degrees of freedom, is solved exactly. Depending on initial conditions the distri-
bution functions and entropy of obstacles can display a nonmonotonic time dependence with over- and

underpopulations followed by transient relaxation.

PACS number(s): 05.20.Dd, 51.10.+y

The wind-tree model introduced by P. and T. Ehren-
fest early in this century [1] is an important testing
ground to check many ideas of nonequilibrium statistical
mechanics. It consists of two sorts of particles: light,
noninteracting particles are moving and are being scat-
tered off a system of immobile obstacles. The density of
the obstacles is low, and they are noninteracting. The
light particles can have only a finite, small number of ve-
locities. In the simplest version [2], only four velocities
are allowed, v;, i=1,...,4 with |v;/=1. Usually it is
assumed that the whole system is spatially uniform.

We present here a generalization of this model in
which the collisions of the light particles with the obsta-
cles can induce the transitions between internal degrees
of freedom of the obstacles. Let us assume for simplicity
that the obstacles can be in two distinct states, left (L) or
right (R). The system of such obstacles is now exposed to
collisions with incoming particles. We identify the L and
R directions with the x axis of particle velocity. Thus
effectively the internal states of the obstacles are also
one-dimensional. The interaction between the particles
and obstacles is also anisotropic: the state R can be ob-
tained from L through a collision with v=(1,0), and the
state L is produced from R through a collision with
v=(—1,0). The state of the system is given by one-
particle distribution functions for particles ¢;(¢),
i=1,...,4, and for obstacles ¥, (¢) and Wy(¢), which
are normalized [ 37_,@;(1)=1, ¥, (¢)+Wg(¢)=1] and
which have the usual probabilistic interpretation. The
collision rules for the model are depicted in Fig. 1, and
the kinetic equations read
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We observe that, according to Egs. (2), the state of the
particles is not influenced by the obstacles, and the state
of the obstacles depends on ¢; and ¢; only (velocities
parallel and antiparallel to the x axis). The coupling con-
stants g and k are simple functions of velocities and are
related to appropriate cross sections. We choose them as
constants here, with g >0 and k > 0.

In the following, we shall demonstrate that Egs. (1) and
(2) can be analytically solved for any finite ratio of cou-
pling constants g /k and for any set of initial conditions
@:(0) and Wg ; (0). We first solve Egs. (2), then substitute
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FIG. 1. Complete set of collision rules for the model. Incom-
ing particles are scattered with a probability % in each perpen-
dicular direction. The internal degrees of freedom of the obsta-
cles are one dimensional, chosen in the x direction. Only col-
lisions with particles with velocities v=(1,0) or (—1,0) (parti-
cles 1 or 3) can modify the state of the obstacles, as seen from
the two first diagrams. This leads directly to Egs. (1) and (2).
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@;(t), i=1,3, into (1), which can be then completely in-
tegrated in terms of known functions.

The solution of (2) is then given in terms of three con-
stants C;=@;(0)—@;(0), C,=@,(0)—@40), and
C3=@(0)+@3(0)— 3
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In the following, we choose C; >0, and, with (3), trans-
form (1) into
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Equations (3) and (6) represent the solution of the prob-
lem. The time dependence of ¥; can be obtained from
(6) even without the cumbersome analysis of Whittaker
functions, as those can be expressed through more com-
mon functions for any integer or half-integer value of
O (06>0), as shown in the Appendix. In the following,
we shall display the results only for such a set of ©
values. As will be shown, the distribution functions
W(t), g and the entropy of the obstacles
S(t)=—Y, () InV, (t)— Vg (¢)In¥x(¢) can have a var-
iety of different time behaviors, which may be either
monotonic or nonmonotonic, as a function of the initial
conditions for ¢;(t) and ¥;(¢) and the coupling constant
O. Our choice of constants implies that ¢’s, ¥’s and S
are dimensionless, and ¢ is expressed in units of g ~!. In
all subsequent cases, we have chosen, without loss of gen-
erality, @,(0)=g¢,(0)=0 (C,=0), i.e., we have assumed
that at =0, the particles are moving only in the x direc-
tion. We note that the value of C, does not enter the ex-
pression for ¥, (¢), Eq. (5).

In Fig. 2(a), the time dependence of W, (¢), k =L, R, for
fixed O, g, and ¥, (0), is illustrated as a function of the
initial conditions on ¢. For ¢,(0)=0, ¥, (¢) is nonmono-
tonic with initial overshoot at small times. For small
values of ¢,(0), ¥, (¢) becomes monotonic, and for larger
[¢(0)>0.5] value of ¢,(0), the nonmonotonicity sets in
again, with very strong undershoots. The nonmonotonic
behavior of W, (?) is very clearly reflected in S (¢) in Fig.
2(b), which shows regions where dS(t)/dt <0. For a
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It is now convenient to introduce a reduced coupling
constant ©=g/8k and a new variable y(¢)
= exp(2C;6e ~#/29), in terms of which the general solu-
tion of (4) is
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The additive integration constant in (5) is, as usual, deter-
mined through W, (¢ =0). The integrals in (5) can be ex-
pressed for arbitrary © >0 in terms of Whittaker func-
tions W, ,(y) [3] as follows:

o+1/2)/2,0172—0)72(¥)

(6)

very anisotropic case ¢;(0)=1 (all particles are coming in
—x direction), the initial slope of S(#) is negative, fol-
lowed by a local minimum. In Fig. 3(a), we study in de-
tail the very anisotropic case ¢,(0)=1, this time as a
function of ¥, (0), for g =6O=1. Here again, only for the
most asymmetric case ¥, (0)=0, the behavior is mono-
tonic; otherwise W, (¢) presents strong local extrema for
short times. In Fig. 3(b), the behavior of entropy is illus-
trated. A local maximum is followed by a minimum be-
fore the equilibrium value is reached asymptotically. In
Fig. 4(a), we have displayed the dependence of ¥, (¢) on
the coupling constant © for fixed initial values of both ¥
and @. With © increasing from 1 to 5, the response of
the obstacles is increasing: W, (¢) shows more and more
pronounced overshoots, which occur for all © at approxi-
mately equal times. The entropy, Fig. 4(b), shows the
behavior similar to Figs. 2 and 3. We stress here that
the peculiar form of entropy with time regions with
dS(t)/dt <0, concerns the subsystem of obstacles.
The total entropy S,(1)=—(¥; In¥; +¥zIn¥,
+ 3¢ @ilng;) is everywhere nondecreasing
(dS, /dt > 0), and consequently the Boltzmann H theorem
is not violated [4].

The nonmonotonic time behavior of the statistical
properties is a feature of certain special classes of
kinetic-theory models. It has been discussed at length in
[5] in conjection with exactly soluble Boltzmann equa-
tions, and it appears, for example, in the solutions of the
Tjon-Wu model [6]. We have obtained this effect from a
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very simple, but exactly soluble, spatially uniform model.

Several extensions of the model are under study. If we
add some interactions to otherwise free particles, the
model is still soluble but with considerably richer struc-
ture. The inclusion of space variables in ¢ and ¥ would
be of great interest, but appears to be rather difficult.
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FIG. 2. (a) Obstacle distribution functions W, (¢) and Wg(z)
for g=1, ©=1, ¥;(0)=0.8, ¥x(0)=0.2, ¢,(0)+¢@5(0)=1, for
different @,(0). (b) Entropy of the obstacles S(t) for the same
set of parameters as in Fig. 2(a). Time ¢ is expressed in units of

g .
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APPENDIX
The integrals I(©) occurring in Eq. (5) can be ex-
pressed through more common functions for any integer
or half-integer positive ©, the number of terms increasing
rapidly with increasing ©. We give here, with obvious
notation, two examples for low values of O:

."... /I'L(O)=1.0
.(0)=0.8

06 ff

80.4 -----
n \ // ‘/
N - /
V(0)=02 // |
\ /./
; ]
\_ /
02 I y%(o)=o 0 _
;

I T B B!

1

L

1

1

1

1

10

15

20

time
FiG. 5. (a) Obstacle distribution functions ¥, (¢) and Wg(t)
for g=O©=1, @,(0)=1 as a function of ¥, (0) and ¥, (0). (b)
Entropy of the obstacles S(¢) for the same set of parameters as

in Fig. 3(a). Time ¢ is expressed in units of g ~!.
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FIG. 4. (a) Obstacle distribution functions W, (#) and W(z) for g=1, ¥, (0)=1, ¢,(0)=0.6, ¢;(0)=0.4, as a function of ©. (b)
Entropy of the obstacles S (¢) for the same set of parameters as in (a). Time ¢ is expressed in units of g ~!.
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where erf(x) and Ei(x) are error function and exponential integral, respectively. For higher values of O, the formulas
become very long and will not be quoted here.
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